• World Health Organization. Mental Health and COVID-19: Early Evidence of the Pandemic’s Impact: Scientific Brief (2022).

  • Adair, C. E. et al. Continuity of care and health outcomes among persons with severe mental illness. Psychiatr. Serv. 56, 1061–1069 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Schulte, J., Schulz, C., Wilhelm, S. & Buhlmann, U. Treatment utilization and treatment barriers in individuals with body dysmorphic disorder. BMC Psychiatry 20, 69 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Daele, T. et al. Online consultations in mental healthcare: modelling determinants of use and experience based on an international survey study at the onset of the pandemic. Internet Interv. 30, 100571 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paganini, S., Teigelkötter, W., Buntrock, C. & Baumeister, H. Economic evaluations of internet- and mobile-based interventions for the treatment and prevention of depression: a systematic review. J. Affect. Disord. 225, 733–755 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Mendes-Santos, C., Nunes, F., Weiderpass, E., Santana, R. & Andersson, G. Understanding mental health professionals’ perspectives and practices regarding the implementation of digital mental health: qualitative study. JMIR Form. Res. 6, e32558 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atik, E., Schückes, M. & Apolinário-Hagen, J. Patient and therapist expectations for a blended cognitive behavioral therapy program for depression: qualitative exploratory study. JMIR Ment. Health 9, e36806 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Witte, N. A. J. et al. Online consultations in mental healthcare during the COVID-19 outbreak: an international survey study on professionals’ motivations and perceived barriers. Internet Interv. 25, 100405 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smoktunowicz, E. et al. Consensus statement on the problem of terminology in psychological interventions using the internet or digital components. Internet Interv. 21, 100331 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Loughlin, K., Neary, M., Adkins, E. C. & Schueller, S. M. Reviewing the data security and privacy policies of mobile apps for depression. Internet Interv. 15, 110–115 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Hennemann, S., Farnsteiner, S. & Sander, L. Internet- and mobile-based aftercare and relapse prevention in mental disorders: a systematic review and recommendations for future research. Internet Interv. 14, 1–17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torous, J. et al. Creating a digital health smartphone app and digital phenotyping platform for mental health and diverse healthcare needs: an interdisciplinary and collaborative approach. J. Technol. Behav. Sci. 4, 73–85 (2019).

    Article 

    Google Scholar
     

  • Lal, S. & Adair, C. E. E-mental health: a rapid review of the literature. Psychiatr. Serv. 65, 24–32 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Pill, J. The Delphi method: substance, context, a critique and an annotated bibliography. Socio Econ. Plan. Sci. 5, 57–71 (1971).

    Article 

    Google Scholar
     

  • Bartlett Ellis, R. et al. Lessons learned: beta-testing the digital health checklist for researchers prompts a call to action by behavioral scientists. J. Med. Internet Res. 23, e25414 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, F. X. et al. An ethics checklist for digital health research in psychiatry: viewpoint. J. Med. Internet Res. 24, e31146 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization. Digital Implementation Investment Guide (DIIG): Integrating Digital Interventions into Health Programmes https://apps.who.int/iris/bitstream/handle/10665/334306/9789240010567-eng.pdf (2020)/

  • Unsworth, H. et al. The NICE Evidence Standards Framework for digital health and care technologies—developing and maintaining an innovative evidence framework with global impact. Digit. Health 7, 20552076211018617 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sundareswaran, V. & Sarkar, A. Chatbots RESET: A Framework for Governing Responsible Use of Conversational AI in Healthcare https://www3.weforum.org/docs/WEF_Governance_of_Chatbots_in_Healthcare_2020.pdf (World Economic Forum, 2020).

  • Doraiswamy, P. M. et al. Empowering 8 billion minds: enabling better mental health for all via the ethical adoption of technologies. NAM Perspect. https://doi.org/10.31478/201910b (2019).

  • Hekler, E. B. et al. Agile science: creating useful products for behavior change in the real world. Transl. Behav. Med. 6, 317–328 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiedler, J., Seiferth, C., Eckert, T., Woll, A. & Wunsch, K. A just-in-time adaptive intervention to enhance physical activity in the SMARTFAMILY2.0 trial. Sport Exerc. Perform. Psychol. https://doi.org/10.1037/spy0000311 (2022).

  • Chan, A. H. Y. & Honey, M. L. L. User perceptions of mobile digital apps for mental health: acceptability and usability—an integrative review. J. Psychiatr. Ment. Health Nurs. 29, 147–168 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Vial, S. & Boudhraâ, S. in Revolutions in Product Design for Healthcare (eds Subburaj, K. et al.) 21–34 (Springer, 2022).

  • Narayan, S., Mok, H., Ho, K. & Kealy, D. I don’t think they’re as culturally sensitive: a mixed-method study exploring e-mental health use among culturally diverse populations. J. Ment. Health 32, 241–247 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wright, M. T., Springett, J. & Kongats, K. in Participatory Health Research (eds Wright, M. T. & Kongats, K.) 3–15 (Springer, 2018).

  • Wright, M. T. Partizipative Gesundheitsforschung: Ursprünge und heutiger Stand. Bundesgesundheitsblatt Gesundheitsforsch. Gesundheitsschutz 64, 140–145 (2021).

    Article 

    Google Scholar
     

  • Carman, K. L. et al. Patient and family engagement: a framework for understanding the elements and developing interventions and policies. Health Affairs 32, 223–231 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Mummah, S. A., Robinson, T. N., King, A. C., Gardner, C. D. & Sutton, S. IDEAS (Integrate, Design, Assess, and Share): a framework and toolkit of strategies for the development of more effective digital interventions to change health behavior. J. Med. Internet Res. 18, e317 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCurdie, T. et al. mHealth consumer apps: the case for user-centered design. Biomed. Instrum. Technol. https://doi.org/10.2345/0899-8205-46.s2.49 (2012).

  • Knowles, S. E. et al. Qualitative meta-synthesis of user experience of computerised therapy for depression and anxiety. PLoS ONE 9, e84323 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Werner-Seidler, A. et al. A smartphone app for adolescents with sleep disturbance: development of the Sleep Ninja. JMIR Ment. Health 4, e28 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braun, V. & Clarke, V. in APA Handbook of Research Methods in Psychology, Vol 2: Research Designs: Quantitative, Qualitative, Neuropsychological, and Biological (eds Cooper, H. et al.) 57–71 (American Psychological Association, 2012).

  • Dopp, A. R., Parisi, K. E., Munson, S. A. & Lyon, A. R. A glossary of user-centered design strategies for implementation experts. Transl. Behav. Med. 9, 1057–1064 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Orlowski, S. K. et al. Participatory research as one piece of the puzzle: a systematic review of consumer involvement in design of technology-based youth mental health and well-being interventions. JMIR Hum. Factors 2, e12 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orji, R. & Moffatt, K. Persuasive technology for health and wellness: state-of-the-art and emerging trends. Health Inform. J. 24, 66–91 (2018).

    Article 

    Google Scholar
     

  • Esfandiari, N. et al. A specific internet-based cognitive behavior therapy for adolescents with social anxiety disorder: three-armed randomized control trial. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2123795/v1 (2022).

  • Yardley, L., Bradbury, K. & Morrison, L. in Qualitative Research in Psychology: Expanding Perspectives in Methodology and Design 2nd edn (ed. Camic, P. M.) 263–282 (American Psychological Association, 2021).

  • Bailey, E. et al. Ethical issues and practical barriers in internet-based suicide prevention research: a review and investigator survey. BMC Med. Ethics 21, 37 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sander, L. et al. Suicide risk management in research on internet-based interventions for depression: a synthesis of the current state and recommendations for future research. J. Affect. Disord. 263, 676–683 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kaurin, A., Dombrovski, A. Y., Hallquist, M. N. & Wright, A. G. C. Integrating a functional view on suicide risk into idiographic statistical models. Behav. Res. Ther. 150, 104012 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Friedlander, A., Nazem, S., Fiske, A., Nadorff, M. R. & Smith, M. D. Self-concealment and suicidal behaviors. Suicide Life Threat Behav. 42, 332–340 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franklin, J. C. et al. Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research. Psychol. Bull. 143, 187–232 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Steeg, S. et al. Accuracy of risk scales for predicting repeat self-harm and suicide: a multicentre, population-level cohort study using routine clinical data. BMC Psychiatry 18, 113 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sisti, D. A. & Joffe, S. Implications of zero suicide for suicide prevention research. JAMA 320, 1633–1634 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Büscher, R. et al. Digital cognitive-behavioural therapy to reduce suicidal ideation and behaviours: a systematic review and meta-analysis of individual participant data. Evid. Based Ment. Health 25, e8–e17 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holmes, E. A. et al. The Lancet Psychiatry Commission on psychological treatments research in tomorrow’s science. Lancet Psychiatry 5, 237–286 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Torok, M. et al. Suicide prevention using self-guided digital interventions: a systematic review and meta-analysis of randomised controlled trials. Lancet Digit. Health 2, e25–e36 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ferreira, T. E-health applications and data protection: a comparison of selected European Union members’ national legal systems. Bioethica 8, 74–84 (2022).

    Article 

    Google Scholar
     

  • Wilkowska, W. & Ziefle, M. Privacy and data security in E-health: requirements from the user’s perspective. Health Inform. J. 18, 191–201 (2012).

    Article 

    Google Scholar
     

  • Albrecht, U.-V. Chances and Risks of Mobile Health Apps (CHARISHMA) (Medizinische Hochschule Hannover, 2016).

  • Lablans, M., Borg, A. & Ückert, F. A RESTful interface to pseudonymization services in modern web applications. BMC Med. Inf. Decis. Making 15, 2 (2015).

    Article 

    Google Scholar
     

  • Cummins, N., Schuller, B. W. & Baird, A. Speech analysis for health: current state-of-the-art and the increasing impact of deep learning. Methods 151, 41–54 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ghosh, S., Löchner, J., Mitra, B. & De, P. in Quantifying Quality of Life (eds Wac, K. & Wulfovich, S.) 209–267 (Springer, 2022).

  • Garriga, R. et al. Machine learning model to predict mental health crises from electronic health records. Nat. Med. 28, 1240–1248 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valstar, M. et al. AVEC 2013: the continuous audio/visual emotion and depression recognition challenge. In Proc. 3rd ACM International Workshop on Audio/Visual Emotion Challenge 3–10 (ACM, 2013).

  • Wang, R. et al. Tracking depression dynamics in college students using mobile phone and wearable sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 1–26 (2018).


    Google Scholar
     

  • Dhall, A., Goecke, R., Gedeon, T. & Sebe, N. Emotion recognition in the wild. J. Multimodal User Interf. 10, 95–97 (2016).

    Article 

    Google Scholar
     

  • Amin, M. M., Cambria, E. & Schuller, B. W. Will affective computing emerge from foundation models and general AI? A first evaluation on ChatGPT. IEEE Intelligent Systems 2, 15–23 (2023).

    Article 

    Google Scholar
     

  • Schuller, B. W. et al. Computational charisma—a brick by brick blueprint for building charismatic artificial intelligence. Preprint at https://doi.org/10.48550/arXiv.2301.00142 (2023).

  • Véliz, C. Chatbots shouldn’t use emojis. Nature 615, 375 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Vazire, S. Who knows what about a person? The self-other knowledge asymmetry (SOKA) model. J. Person. Soc. Psychol. 98, 281–300 (2010).

    Article 

    Google Scholar
     

  • Garatva, P. et al. in Digital Phenotyping and Mobile Sensing (eds Montag, C. & Baumeister, H.) 395–411 (Springer, 2023).

  • Torous, J., Kiang, M. V., Lorme, J. & Onnela, J.-P. New tools for new research in psychiatry: a scalable and customizable platform to empower data driven smartphone research. JMIR Ment. Health 3, e16 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cornet, V. P. & Holden, R. J. Systematic review of smartphone-based passive sensing for health and wellbeing. J. Biomed. Inform. 77, 120–132 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Moshe, I. et al. Predicting symptoms of depression and anxiety using smartphone and wearable data. Front. Psychiatry 12, 625247 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vasudevan, S., Saha, A., Tarver, M. E. & Patel, B. Digital biomarkers: convergence of digital health technologies and biomarkers. npj Digit. Med. 5, 36 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asare, O. K. et al. Predicting depression from smartphone behavioral markers using machine learning methods, hyperparameter optimization, and feature importance analysis: exploratory study. JMIR mHealth uHealth 9, e26540 (2021).

    Article 

    Google Scholar
     

  • Fried, E. I., Rieble, C. & Proppert, R. K. K. Building an early warning system for depression: rationale, objectives, and methods of the WARN-D study. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/9qcvs (2022).

  • Lattie, E. G. et al. Digital mental health interventions for depression, anxiety, and enhancement of psychological well-being among college students: systematic review. J. Med. Internet Res. 21, e12869 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torous, J. et al. Smartphones, sensors, and machine learning to advance real-time prediction and interventions for suicide prevention: a review of current progress and next steps. Curr. Psychiatry Rep. 20, 51 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kargl, F., van der Heijden, R. W., Erb, B. & Bösch, C. in Digital Phenotyping and Mobile Sensing (eds Montag. C. & Baumeister, H.) 13–23 (Springer, 2023).

  • Larsen, M. E. et al. Using science to sell apps: evaluation of mental health app store quality claims. npj Digit. Med. 2, 18 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein, R. A. et al. Investigating variation in replicability. Soc. Psychol. 45, 142–152 (2014).

    Article 

    Google Scholar
     

  • Simblett, S., Birch, J., Matcham, F., Yaguez, L. & Morris, R. A systematic review and meta-analysis of e-mental health interventions to treat symptoms of posttraumatic stress. JMIR Ment. Health 4, e14 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magnusson, K., Andersson, G. & Carlbring, P. The consequences of ignoring therapist effects in trials with longitudinal data: a simulation study. J. Consult. Clin. Psychol. 86, 711–725 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Johns, R. G., Barkham, M., Kellett, S. & Saxon, D. A systematic review of therapist effects: a critical narrative update and refinement to review. Clin. Psychol. Rev. 67, 78–93 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Rozental, A., Andersson, G. & Carlbring, P. In the absence of effects: an individual patient data meta-analysis of non-response and its predictors in internet-based cognitive behavior therapy. Front. Psychol. 10, 589 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mander, J. et al. The therapeutic alliance in different mental disorders: a comparison of patients with depression, somatoform, and eating disorders. Psychol. Psychother. 90, 649–667 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Mechler, J. et al. Sudden gains and large intersession improvements in internet-based psychodynamic treatment (IPDT) for depressed adolescents. Psychother. Res. 31, 455–467 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • von Klipstein, L., Riese, H., van der Veen, D. C., Servaas, M. N. & Schoevers, R. A. Using person-specific networks in psychotherapy: challenges, limitations, and how we could use them anyway. BMC Med. 18, 345 (2020).

    Article 

    Google Scholar
     

  • van den Bergh, R. et al. The content of personalised network-based case formulations. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/yan4k (2022).

  • Olthof, M. et al. Destabilization in self-ratings of the psychotherapeutic process is associated with better treatment outcome in patients with mood disorders. Psychother. Res. 30, 520–531 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Schiepek, G. et al. Real-time monitoring of psychotherapeutic processes: concept and compliance. Front. Psychol. 7, 604 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasselman, F. & Bosman, A. M. T. Studying complex adaptive systems with internal states: a recurrence network approach to the analysis of multivariate time-series data representing self-reports of human experience. Front. Appl. Math. Stat. https://doi.org/10.3389/fams.2020.00009 (2020).

  • Wallot, S. Recurrence quantification analysis of processes and products of discourse: a tutorial in R. Discourse Process. 54, 382–405 (2017).

    Article 

    Google Scholar
     

  • Myin-Germeys, I. & Kuppens, P. The Open Handbook of Sampling Methodology. A Step-by-Step Guide to Designing, Conducting, and Analyzing ESM studies (The Center for Research on Experience Sampling and Ambulatory Methods Leuven, 2021).

  • Trull, T. J. & Ebner-Priemer, U. Ambulatory assessment. Annu. Rev. Clin. Psychol. 9, 151–176 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Insel, T. R. Digital phenotyping: a global tool for psychiatry. World Psychiatry 17, 276–277 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ebner-Priemer, U. W. et al. Digital phenotyping: towards replicable findings with comprehensive assessments and integrative models in bipolar disorders. Int. J. Bipolar Disord. 8, 35 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Myin-Germeys, I. et al. Experience sampling methodology in mental health research: new insights and technical developments. World Psychiatry 17, 123–132 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fortea, L. et al. Development and validation of a smartphone-based app for the longitudinal assessment of anxiety in daily life. Assessment https://doi.org/10.1177/10731911211065166 (2021).

  • Wrzus, C. & Neubauer, A. B. Ecological momentary assessment: a meta-analysis on designs, samples, and compliance across research fields. Assessment https://doi.org/10.1177/10731911211067538 (2022).

  • Geldhof, G. J., Preacher, K. J. & Zyphur, M. J. Reliability estimation in a multilevel confirmatory factor analysis framework. Psychol. Methods 19, 72–91 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Kockler, T. D., Santangelo, P. S. & Ebner-Priemer, U. W. Investigating binge eating using ecological momentary assessment: the importance of an appropriate sampling frequency. Nutrients 10, 105 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ottenstein, C. & Werner, L. Compliance in ambulatory assessment studies: investigating study and sample characteristics as predictors. Assessment https://doi.org/10.1177/10731911211032718 (2021).

  • Lecomte, T. et al. Mobile apps for mental health issues: meta-review of meta-analyses. JMIR mHealth uHealth 8, e17458 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linardon, J., Cuijpers, P., Carlbring, P., Messer, M. & Fuller-Tyszkiewicz, M. The efficacy of app-supported smartphone interventions for mental health problems: a meta-analysis of randomized controlled trials. World Psychiatry 18, 325–336 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleming, T. et al. Beyond the trial: systematic review of real-world uptake and engagement with digital self-help interventions for depression, low mood, or anxiety. J. Med. Internet Res. 20, e199 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torous, J. et al. The growing field of digital psychiatry: current evidence and the future of apps, social media, chatbots, and virtual reality. World Psychiatry 20, 318–335 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chien, I. et al. A machine learning approach to understanding patterns of engagement with internet-delivered mental health interventions. JAMA Netw. Open 3, e2010791 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torous, J., Lipschitz, J., Ng, M. & Firth, J. Dropout rates in clinical trials of smartphone apps for depressive symptoms: a systematic review and meta-analysis. J. Affect. Disord. 263, 413–419 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Richards, D. & Richardson, T. Computer-based psychological treatments for depression: a systematic review and meta-analysis. Clin. Psychol. Rev. 32, 329–342 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Alon, N., Stern, A. D. & Torous, J. Assessing the Food and Drug Administration’s risk-based framework for software precertification with top health apps in the United States: quality improvement study. JMIR mHealth uHealth 8, e20482 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stern, A. D. et al. Advancing digital health applications: priorities for innovation in real-world evidence generation. Lancet Digit. Health 4, e200–e206 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Lagan, S. et al. Mental health app evaluation: updating the American Psychiatric Association’s framework through a stakeholder-engaged workshop. Psychiatr. Serv. 72, 1095–1098 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Stoyanov, S. R. et al. Mobile app rating scale: a new tool for assessing the quality of health mobile apps. JMIR mHealth uHealth 3, e27 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramos, G., Ponting, C., Labao, J. P. & Sobowale, K. Considerations of diversity, equity, and inclusion in mental health apps: a scoping review of evaluation frameworks. Behav. Res. Ther. 147, 103990 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Carlo, A. D., Hosseini Ghomi, R., Renn, B. N. & Areán, P. A. By the numbers: ratings and utilization of behavioral health mobile applications. npj Digit. Med. 2, 54 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lagan, S. et al. Actionable health app evaluation: translating expert frameworks into objective metrics. npj Digit. Med. 3, 100 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szinay, D. et al. Influences on the uptake of health and well-being apps and curated app portals: think-aloud and interview study. JMIR mHealth uHealth 9, e27173 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts, A. E. et al. Evaluating the quality and safety of health-related apps and e-tools: adapting the Mobile App Rating Scale and developing a quality assurance protocol. Internet Interv. 24, 100379 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huber, M. et al. How should we define health? BMJ 343, d4163 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Wasil, A. R., Gillespie, S., Shingleton, R., Wilks, C. R. & Weisz, J. R. Examining the reach of smartphone apps for depression and anxiety. Am. J. Psychiatry 177, 464–465 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Gentili, A. et al. The cost-effectiveness of digital health interventions: a systematic review of the literature. Front. Public Health 10, 787135 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell, L. M., Joshi, U., Patel, V., Lu, C. & Naslund, J. A. Economic evaluations of internet-based psychological interventions for anxiety disorders and depression: a systematic review. J. Affect. Disord. 284, 157–182 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wac, K. in Digital Health (eds Rivas, H. & Wac, K.) 83–108 (Springer, 2018).