• Hoste, E. A. et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive care Med. 41, 1411–1423 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Lameire, N. H. et al. Acute kidney injury: an increasing global concern. Lancet 382, 170–179 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Venkataraman, R. & Kellum, J. A. Prevention of acute renal failure. Chest 131, 300–308 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarbadhikari, S. & Sarbadhikari, S. N. The global experience of digital health interventions in COVID-19 management. Indian J. Public Health 64, S117–S124 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ronquillo, Y., Meyers, A. & Korvek, S. J. StatPearls (StatPearls Publishing LLC., 2022).

  • Chawla, L. S. et al. Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 workgroup. Nat. Rev. Nephrol. 13, 241–257 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Kashani, K. et al. Quality improvement goals for acute kidney injury. Clin. J. Am. Soc. Nephrol. 14, 941–953 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kellum, J. A., Bellomo, R. & Ronco, C. Acute Dialysis Quality Initiative (ADQI): methodology. Int. J. Artif. Organs 31, 90–93 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • U. S. Food and Drug Administration. What is digital health? https://www.fda.gov/medical-devices/digital-health-center-excellence/what-digital-health (2020).

  • World Health Organization. Digital health. https://www.who.int/health-topics/digital-health#tab=tab_1 (2020).

  • Healthcare Information and Management Systems Society. Digital health transformation: your blueprint for digital health advancement. https://www.himss.org/what-we-do-solutions/digital-health-transformation?gclid=EAIaIQobChMIsdqA6sDX9wIV5BTUAR1evQXIEAAYASAAEgLNbPD_BwE (2005).

  • American Medical Association. AMA digital health care 2022 study findings. https://www.ama-assn.org/about/research/ama-digital-health-care-2022-study-findings (2022).

  • Hunter, J. S. Enhancing Friedman’s “fundamental theorem of biomedical informatics”. J. Am. Med. Inf. Assoc. 17, 112–113 (2010).

    Article 

    Google Scholar
     

  • Jain, G., Ahmad, M. & Wallace, E. L. Technology, telehealth, and nephrology: the time is now. Kidney360 1, 834–836 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y., Chen, H., Qazi, H. & Morita, P. P. Intervention and evaluation of mobile health technologies in management of patients undergoing chronic dialysis: scoping review. JMIR Mhealth Uhealth 8, e15549 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loncar-Turukalo, T., Zdravevski, E., Machado da Silva, J., Chouvarda, I. & Trajkovik, V. Literature on wearable technology for connected health: scoping review of research trends, advances, and barriers. J. Med. Internet Res. 21, e14017 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Digital Therapeutics Alliance, D. T. Transforming global healthcare by advancing digital therapeutics. https://dtxalliance.org/ (2022).

  • Barracca, A. et al. Digital health: a new frontier. J. Transl. Crit. Care Med. 5, e00018 (2023).

    Article 

    Google Scholar
     

  • Ramakrishnan, P., Yan, K., Balijepalli, C. & Druyts, E. Changing face of healthcare: digital therapeutics in the management of diabetes. Curr. Med. Res. Opin. 37, 2089–2091 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Tolan, N. V. et al. The impact of outpatient laboratory alerting mechanisms in patients with AKI. Kidney360 2, 1560–1568 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. et al. Value of electronic alerts for acute kidney injury in high-risk wards: a pilot randomized controlled trial. Int. Urol. Nephrol. 50, 1483–1488 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kothari, T., Jensen, K., Mallon, D., Brogan, G. & Crawford, J. Impact of daily electronic laboratory alerting on early detection and clinical documentation of acute kidney injury in hospital settings. Acad. Pathol. 5, 2374289518816502 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • West Midlands Acute Medicine Collaborative. The impact of the NHS electronic-alert system on the recognition and management of acute kidney injury in acute medicine. Clin. Med. 19, 109–113 (2019).

    Article 

    Google Scholar
     

  • Thomas, M. E. et al. The acute kidney outreach to prevent deterioration and death trial: a large pilot study for a cluster-randomized trial. Nephrol. Dial. Transpl. 36, 657–665 (2021).

    Article 

    Google Scholar
     

  • Tollitt, J. et al. Improved management of acute kidney injury in primary care using e-alerts and an educational outreach programme. Fam. Pract. 35, 684–689 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Colpaert, K. et al. Impact of real-time electronic alerting of acute kidney injury on therapeutic intervention and progression of RIFLE class. Crit. Care Med. 40, 1164–1170 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Arias Pou, P., Aquerreta Gonzalez, I., Idoate Garcia, A. & Garcia-Fernandez, N. Improvement of drug prescribing in acute kidney injury with a nephrotoxic drug alert system. Eur. J. Hosp. Pharm. 26, 33–38 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Selby, N. M. et al. An organizational-level program of intervention for AKI: a pragmatic stepped wedge cluster randomized trial. J. Am. Soc. Nephrol. 30, 505–515 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCoy, A. B. et al. Real-time pharmacy surveillance and clinical decision support to reduce adverse drug events in acute kidney injury: a randomized, controlled trial. Appl. Clin. Inf. 3, 221–238 (2012).

    Article 

    Google Scholar
     

  • Kotwal, S. et al. Electronic alerts and a care bundle for acute kidney injury — an Australian cohort study. Nephrol. Dial. Transplant. 38, 610–617 (2022).

    Article 

    Google Scholar
     

  • Goldstein, S. L. et al. A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int. 90, 212–221 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Kellum, J. A., Kane-Gill, S. L. & Handler, S. M. Can decision support systems work for acute kidney injury? Nephrol. Dial. Transpl. 30, 1786–1789 (2015).

    Article 

    Google Scholar
     

  • Wilson, F. P. et al. Electronic health record alerts for acute kidney injury: multicenter, randomized clinical trial. BMJ 372, m4786 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldstein, S. L. et al. A prospective multi-center quality improvement initiative (NINJA) indicates a reduction in nephrotoxic acute kidney injury in hospitalized children. Kidney Int. 97, 580–588 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, F. P. et al. Automated, electronic alerts for acute kidney injury: a single-blind, parallel-group, randomised controlled trial. Lancet 385, 1966–1974 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pattharanitima, P. et al. Comparison of approaches for prediction of renal replacement therapy-free survival in patients with acute kidney injury. Blood Purif. 50, 621–627 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Akl, A. I., Sobh, M. A., Enab, Y. M. & Tattersall, J. Artificial intelligence: a new approach for prescription and monitoring of hemodialysis therapy. Am. J. Kidney Dis. 38, 1277–1283 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neyra, J. A. & Nadkarni, G. N. Continuous kidney replacement therapy of the future: innovations in information technology, data analytics, and quality assurance systems. Adv. Chronic Kidney Dis. 28, 13–19 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kang, M. W. et al. Machine learning model to predict hypotension after starting continuous renal replacement therapy. Sci. Rep. 11, 17169 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, S. et al. Impact of electronic Acute Kidney Injury (AKI) alerts with automated nephrologist consultation on detection and severity of AKI: a quality improvement study. Am. J. Kidney Dis. 71, 9–19 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kolhe, N. V. et al. Impact of compliance with a care bundle on acute kidney injury outcomes: a prospective observational study. PLoS One 10, e0132279 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hodgson, L. E. et al. The ICE-AKI study: impact analysis of a clinical prediction rule and electronic AKI alert in general medical patients. PLoS One 13, e0200584 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newton, E. S., Kurzen, E. A., Linnemann, R. W. & Shin, H. S. Use of the NINJA (Nephrotoxic Injury Negated by Just-in-Time Action) program to identify nephrotoxicity in pediatric patients with cystic fibrosis. J. Pediatr. Pharmacol. Ther. 26, 379–383 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kane-Gill, S. L., Barreto, E. F., Bihorac, A. & Kellum, J. A. Development of a theory-informed behavior change intervention to reduce inappropriate prescribing of nephrotoxins and renally eliminated drugs. Ann. Pharmacother. 55, 1474–1485 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamming, L. et al. Barriers and enablers to the implementation of a complex quality improvement intervention for acute kidney injury: a qualitative evaluation of stakeholder perceptions of the Tackling AKI study. PLoS One 14, e0222444 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koyner, J. L., Carey, K. A., Edelson, D. P. & Churpek, M. M. The development of a machine learning inpatient acute kidney injury prediction model. Crit. Care Med. 46, 1070–1077 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zimmerman, L. P. et al. Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements. BMC Med. Inf. Decis. Mak. 19, 16 (2019).

    Article 

    Google Scholar
     

  • Koyner, J. L., Adhikari, R., Edelson, D. P. & Churpek, M. M. Development of a multicenter ward-based AKI prediction model. Clin. J. Am. Soc. Nephrol. 11, 1935–1943 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiofolo, C., Chbat, N., Ghosh, E., Eshelman, L. & Kashani, K. Automated continuous acute kidney injury prediction and surveillance: a random forest model. Mayo Clin. Proc. 94, 783–792 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Schwager, E. et al. Accurate and interpretable prediction of ICU-acquired AKI. J. Crit. Care 75, 154278 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Rank, N. et al. Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance. NPJ Digit. Med. 3, 139 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Z. et al. Predictive modeling of the risk of acute kidney injury in critical care: a systematic investigation of the class imbalance problem. AMIA Jt. Summits Transl. Sci. Proc. 2019, 809–818 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Z. et al. Identifying sub-phenotypes of acute kidney injury using structured and unstructured electronic health record data with memory networks. J. Biomed. Inf. 102, 103361 (2020).

    Article 

    Google Scholar
     

  • Tomašev, N. et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature 572, 116–119 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Churpek, M. M. et al. Internal and external validation of a machine learning risk score for acute kidney injury. JAMA Netw. Open. 3, e2012892 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, X. et al. Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction. Nat. Commun. 11, 5668 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Jaghbeer, M., Dealmeida, D., Bilderback, A., Ambrosino, R. & Kellum, J. A. Clinical decision support for in-hospital AKI. J. Am. Soc. Nephrol. 29, 654–660 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bataineh, A. et al. Sustained effects of a clinical decision support system for acute kidney injury. Nephrol. Dial. Transpl. 35, 1819–1821 (2020).

    Article 

    Google Scholar
     

  • Barker, J. et al. Electronic alerts for acute kidney injury across primary and secondary care. BMJ Open. Qual. 10, e000956 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holmes, J. et al. Acute kidney injury electronic alerts in primary care — findings from a large population cohort. QJM 110, 577–582 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holmes, J. et al. Utility of electronic AKI alerts in intensive care: a national multicentre cohort study. J. Crit. Care 44, 185–190 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Holmes, J., Donovan, K., Geen, J., Williams, J. & Phillips, A. O. Acute kidney injury demographics and outcomes: changes following introduction of electronic acute kidney injury alerts — an analysis of a national dataset. Nephrol. Dial. Transpl. 36, 1433–1439 (2021).

    Article 

    Google Scholar
     

  • Holmes, J. et al. Community acquired acute kidney injury: findings from a large population cohort. QJM 110, 741–746 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, J. et al. Machine learning model for early prediction of acute kidney injury (AKI) in pediatric critical care. Crit. Care 25, 288 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flechet, M. et al. Machine learning versus physicians’ prediction of acute kidney injury in critically ill adults: a prospective evaluation of the AKI predictor. Crit. Care 23, 282 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neyra, J. A. et al. Prediction of mortality and major adverse kidney events in critically ill patients with acute kidney injury. Am. J. Kidney Dis. 81, 36–47 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lei, V. J. et al. Risk stratification for postoperative acute kidney injury in major noncardiac surgery using preoperative and intraoperative data. JAMA Netw. Open. 2, e1916921 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Demirjian, S. et al. Predictive accuracy of a perioperative laboratory test-based prediction model for moderate to severe acute kidney injury after cardiac surgery. JAMA 327, 956–964 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rashidi, H. H. et al. Early recognition of burn- and trauma-related acute kidney injury: a pilot comparison of machine learning techniques. Sci. Rep. 10, 205 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez, D. A. et al. Early prediction of acute kidney injury in the emergency department with machine-learning methods applied to electronic health record data. Ann. Emerg. Med. 76, 501–514 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Macedo, E. et al. Recognition and management of community-acquired acute kidney injury in low-resource settings in the ISN 0by25 trial: a multi-country feasibility study. PLoS Med. 18, e1003408 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montanari, A. et al. Can teledialysis help in the clinical management of patients on remote hemodialysis? Int. J. Artif. organs 15, 397–400 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Androga, L. A. et al. Provider perspectives and clinical outcomes with inpatient telenephrology. Clin. J. Am. Soc. Nephrol. 17, 655–662 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kane-Gill, S. L. & Rincon, F. Expansion of telemedicine services: telepharmacy, telestroke, teledialysis, tele-emergency medicine. Crit. care Clin. 35, 519–533 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mayer, K. P. et al. Acute kidney injury contributes to worse physical and quality of life outcomes in survivors of critical illness. BMC Nephrol. 23, 137 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silver, S. A. et al. What insights do patients and caregivers have on acute kidney injury and posthospitalisation care? A single-centre qualitative study from Toronto, Canada. BMJ Open. 8, e021418 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleming, J. N. et al. Impact of a pharmacist-led, mHealth-based intervention on tacrolimus trough variability in kidney transplant recipients: a report from the TRANSAFE Rx randomized controlled trial. Am. J. Health Syst. Pharm. 78, 1287–1293 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGillicuddy, J. W., Chandler, J. L., Sox, L. R. & Taber, D. J. Exploratory analysis of the impact of an mhealth medication adherence intervention on tacrolimus trough concentration variability: post hoc results of a randomized controlled trial. Ann. Pharmacother. 54, 1185–1193 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzales, H. M. et al. Pharmacist-led mobile health intervention and transplant medication safety: a randomized controlled clinical trial. Clin. J. Am. Soc. Nephrol. 16, 776–784 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castro, A. C. et al. Wearable artificial kidney and wearable ultrafiltration device vascular access — future directions. Clin. Kidney J. 12, 300–307 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wieringa, F. P., Broers, N. J. H., Kooman, J. P., Van Der Sande, F. M. & Van Hoof, C. Wearable sensors: can they benefit patients with chronic kidney disease? Expert. Rev. Med. Devices 14, 505–519 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siew, E. D. et al. Improving care for patients after hospitalization with AKI. J. Am. Soc. Nephrol. 31, 2237–2241 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ronco, C., Rizo-Topete, L., Serrano-Soto, M. & Kashani, K. Pro: prevention of acute kidney injury: time for teamwork and new biomarkers. Nephrol. Dial. Transpl. 32, 408–413 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Park, S. M. et al. A mountable toilet system for personalized health monitoring via the analysis of excreta. Nat. Biomed. Eng. 4, 624–635 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boehmer, K. R. et al. Capacity coaching: a new strategy for coaching patients living with multimorbidity and organizing their care. Mayo Clin. Proc. 94, 278–286 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Rizo-Topete, L. M., Rosner, M. H. & Ronco, C. Acute kidney injury risk assessment and the nephrology rapid response team. Blood Purif. 43, 82–88 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Coffey, J. D. et al. Implementation of a multisite, interdisciplinary remote patient monitoring program for ambulatory management of patients with COVID-19. NPJ Digit. Med. 4, 123 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Connell, A. & Laing, C. Acute kidney injury. Clin. Med. 15, 581–584 (2015).

    Article 

    Google Scholar
     

  • Chang, J., Ronco, C. & Rosner, M. H. Computerized decision support systems: improving patient safety in nephrology. Nat. Rev. Nephrol. 7, 348–355 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldstein, S. L. et al. Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. Pediatrics 132, e756–e767 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Connell, A. et al. Evaluation of a digitally-enabled care pathway for acute kidney injury management in hospital emergency admissions. NPJ Digit. Med. 2, 67 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Driest, S. L. et al. Acute kidney injury risk-based screening in pediatric inpatients: a pragmatic randomized trial. Pediatr. Res. 87, 118–124 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bauer, M. S., Damschroder, L., Hagedorn, H., Smith, J. & Kilbourne, A. M. An introduction to implementation science for the non-specialist. BMC Psychol. 3, 32 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aarons, G. A., Hurlburt, M. & Horwitz, S. M. Advancing a conceptual model of evidence-based practice implementation in public service sectors. Adm. Policy Ment. Health 38, 4–23 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • NHS. Design principles. NHS Digital Service Manual https://service-manual.nhs.uk/design-system/design-principles (2022).

  • Kayser, L., Kushniruk, A., Osborne, R. H., Norgaard, O. & Turner, P. Enhancing the effectiveness of consumer-focused health information technology systems through ehealth literacy: a framework for understanding users’ needs. JMIR Hum. Factors 2, e9 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camacho, J., Zanoletti-Mannello, M., Landis-Lewis, Z., Kane-Gill, S. L. & Boyce, R. D. A conceptual framework to study the implementation of clinical decision support systems (BEAR): literature review and concept mapping. J. Med. Internet Res. 22, e18388 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenhalgh, T. et al. The NASSS-CAT tools for understanding, guiding, monitoring, and researching technology implementation projects in health and social care: protocol for an evaluation study in real-world settings. JMIR Res. Protoc. 9, e16861 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moffett, B. S. & Goldstein, S. L. Acute kidney injury and increasing nephrotoxic-medication exposure in noncritically-ill children. Clin. J. Am. Soc. Nephrol. 6, 856–863 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zappitelli, M. et al. Ascertainment and epidemiology of acute kidney injury varies with definition interpretation. Clin. J. Am. Soc. Nephrol. 3, 948–954 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirkendall, E. S. et al. Development and performance of electronic acute kidney injury triggers to identify pediatric patients at risk for nephrotoxic medication-associated harm. Appl. Clin. Inf. 5, 313–333 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Walsh, K. E., Bundy, D. G. & Landrigan, C. P. Preventing health care-associated harm in children. JAMA 311, 1731–1732 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leape, L. L. & Berwick, D. M. Five years after to err is human: what have we learned. JAMA 293, 2384–2390 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landrigan, C. P. et al. Temporal trends in rates of patient harm resulting from medical care. N. Engl. J. Med. 363, 2124–2134 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shekelle, P. G. et al. Assessing the Evidence for Context-Sensitive Effectiveness and Safety of Patient Safety Practices: Developing Criteria (Agency for Healthcare Research and Quality, 2010).

  • Wilson, F. P. et al. A randomized clinical trial assessing the effect of automated medication-targeted alerts on acute kidney injury outcomes. Nat. Commun. 14, 2826 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bourdeaux, C. et al. Impact of a computerized decision support tool deployed in two intensive care units on acute kidney injury progression and guideline compliance: a prospective observational study. Crit. Care 24, 656 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price-Haywood, E. G., Harden-Barrios, J., Ulep, R. & Luo, Q. eHealth literacy: patient engagement in identifying strategies to encourage use of patient portals among older adults. Popul. Health Manag. 20, 486–494 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Triana, A. J., Gusdorf, R. E., Shah, K. P. & Horst, S. N. Technology literacy as a barrier to telehealth during COVID-19. Telemed. J. E Health 26, 1118–1119 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • UK Government. The Future of Healthcare: Our Vision for Digital, Data and Technology in Health and Care https://www.gov.uk/government/publications/the-future-of-healthcare-our-vision-for-digital-data-and-technology-in-health-and-care/the-future-of-healthcare-our-vision-for-digital-data-and-technology-in-health-and-care (2018).

  • Goldstein, B. A., Navar, A. M., Pencina, M. J. & Ioannidis, J. P. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J. Am. Med. Inf. Assoc. 24, 198–208 (2017).

    Article 

    Google Scholar
     

  • Selby, N. M. et al. Standardizing the early identification of acute kidney injury: the NHS England national patient safety alert. Nephron 131, 113–117 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Singh, K. et al. Patients’ and nephrologists’ evaluation of patient-facing smartphone apps for CKD. Clin. J. Am. Soc. Nephrol. 14, 523–529 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, K. et al. Many mobile health apps target high-need, high-cost populations, but gaps remain. Health Aff. 35, 2310–2318 (2016).

    Article 

    Google Scholar
     

  • Rodriguez, J. A. & Singh, K. The Spanish availability and readability of diabetes apps. J. Diabetes Sci. Technol. 12, 719–724 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walter, Y. The rapid competitive economy of machine learning development: a discussion on the social risks and benefits. AI Ethics https://doi.org/10.1007/s43681-023-00276-7 (2023).

  • Denham, E. RFA0627721 — Provision of Patient Data to DeepMind https://ico.org.uk/media/action-weve-taken/undertakings/2014353/undertaking-cover-letter-revised-04072017-to-first-person.pdf (2017).

  • Royal Free London NHS Foundation Trust. Information Commissioner’s Office (ICO) Investigation https://www.royalfree.nhs.uk/patients-visitors/how-we-use-patient-information/information-commissioners-office-ico-investigation-into-our-work-with-deepmind/ (2019).

  • Barasch, J., Zager, R. & Bonventre, J. V. Acute kidney injury: a problem of definition. Lancet 389, 779–781 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2 (Suppl.), 1–138 (2012).

  • Selby, N. M. et al. Use of electronic results reporting to diagnose and monitor AKI in hospitalized patients. Clin. J. Am. Soc. Nephrol. 7, 533–540 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • UK Renal Registry. Acute Kidney Injury (AKI) in England — A Report on the Nationwide Collection of AKI Warning Test Scores from 2018 https://ukkidney.org/sites/renal.org/files/AKI_report_FINAL_13072020.pdf (2020).

  • Hoste, E. A. J. et al. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 14, 607–625 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cummins, N. & Schuller, B. W. Five crucial challenges in digital health. Front. Digit. Health 2, 536203 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cordeiro, J. V. Digital technologies and data science as health enablers: an outline of appealing promises and compelling ethical, legal, and social challenges. Front. Med. 8, 647897 (2021).

    Article 

    Google Scholar
     

  • Čartolovni, A., Tomičić, A. & Lazić Mosler, E. Ethical, legal, and social considerations of AI-based medical decision-support tools: a scoping review. Int. J. Med. Inform. 161, 104738 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Suresh, H. & Guttag, J. Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO ‘21) (ACM, 2021).

  • Julien, H. M., Eberly, L. A. & Adusumalli, S. Telemedicine and the forgotten America. Circulation 142, 312–314 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, G. K. L. et al. Telemedicine in resource-limited settings to optimize care for multidrug-resistant tuberculosis. Front. Public. Health 7, 222 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yala, A. et al. Multi-institutional validation of a mammography-based breast cancer risk model. J. Clin. Oncol. 40, 1732–1740 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Yala, A. et al. Toward robust mammography-based models for breast cancer risk. Sci. Transl. Med. 13, eaba4373 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Price, W. N. II. Medical AI and Contextual Bias. 33 Harv. J.L. & Tech. 66 (2019), U of Michigan Public Law Research Paper No. 632 https://ssrn.com/abstract=3347890 (2019).

  • Gerke, S., Minssen, T. & Cohen, G. Ethical and legal challenges of artificial intelligence-driven healthcare. In Artificial Intelligence in Healthcare (eds. Bohr, A. & Memarzadeh, K.) Ch. 12, 295–336 (Elsevier, 2020).

  • Brall, C., Schroder-Back, P. & Maeckelberghe, E. Ethical aspects of digital health from a justice point of view. Eur. J. Public. Health 29, 18–22 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization. Ethics and Governance of Artificial Intelligence for Health: WHO Guidance https://www.who.int/publications-detail-redirect/9789240029200 (2021).

  • Shcherbina, A. et al. Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. J. Pers. Med. 7, 3 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valbuena, V. S. M. et al. Racial bias and reproducibility in pulse oximetry among medical and surgical inpatients in general care in the Veterans Health Administration 2013–19: multicenter, retrospective cohort study. BMJ 378, e069775 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogels, E. A. Digital divide persists even as Americans with lower incomes make gains in tech adoption. https://www.pewresearch.org/short-reads/2021/06/22/digital-divide-persists-even-as-americans-with-lower-incomes-make-gains-in-tech-adoption/ (2021).

  • The White House. Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People https://www.whitehouse.gov/ostp/ai-bill-of-rights/ (2022).

  • European Commission. A European Approach to Artificial Intelligence https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence (2021).

  • Metaxa, D. et al. Auditing algorithms: understanding algorithmic systems from the outside in. Found. Trends Hum. Comput. Interact. 14, 272–344 (2021).

    Article 

    Google Scholar
     

  • Obermeyer, Z. et al. Algorithmic Bias Playbook https://www.chicagobooth.edu/-/media/project/chicago-booth/centers/caai/docs/algorithmic-bias-playbook-june-2021.pdf (2021).

  • Acute Dialysis Quality Initiative. AKI in digital health figures. https://pittccmblob.blob.core.windows.net/adqi/27fig.pdf (2022).